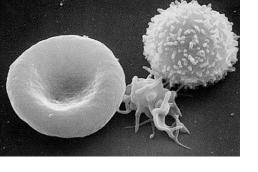
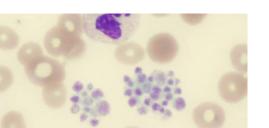

Welcome!

- To join the call dial (866) 740-1260, passcode 3754894#.
- All participants are placed on mute for the duration of the webinar.
- If you have questions, type them in the chat box at the bottom left hand side of your screen. They will be answered at the end of the presentation.
- This conference is being recorded for future use.
- The recording will be made available on the ASPHO website afterwards.


Evidence-based Decision Making for Transfusion Practices

Moderator: John Fargo, DO

Speaker: William Savage, MD PhD



Evidence-based Decision Making for Transfusion "What's the News on When to Transfuse"

Will Savage, MD, PhD

Disclosures

- Shire Pharmaceuticals (1/17/17-)
 - Full time-employee
 - Equity ownership
- PosterCast, LLC
 - Manager
 - Equity ownership

Objective

- Discuss recent evidence for blood product support scenarios
 - Indications
 - Dosing
 - Product selection
- Broad review with focus on newer clinical trial data

Outline

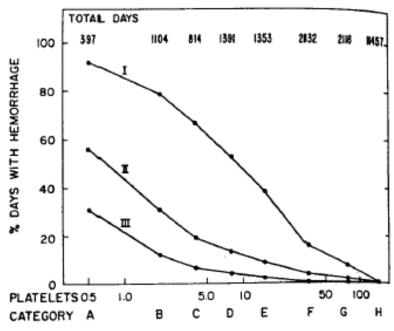
- Platelet Transfusion
 - Prophylactic threshold and dose
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion

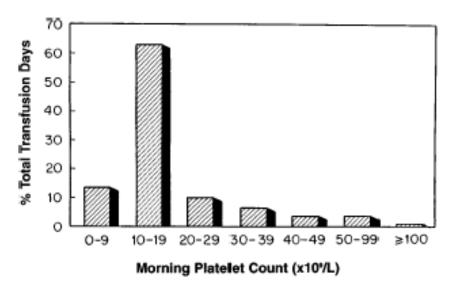
Outline

- Platelet Transfusion
 - Prophylactic threshold
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion

Gaydos et al., 1962 (NEJM)

- Retrospective review of 92 patients with ALL and AML starting at Dx.
- "Patients were followed till death"
- "There was no threshold"
- Manual plt counts




FIGURE 1. Relation between Hemorrhage and Platelet Count.

The percentage of days with hemorrhage for the 92 patients combined is shown for each of the 8 platelet-count categories. (Figures across the top are the total number of patient days in each of the categories.) Curve I shows data for all hemorrhagic manifestations. In Curve II skin hemorrhage and epistaxis are excluded. Curve III refers only to grossly visible hemorrhage.

Platelet Transfusions Prevent Bleeding?

- 18 center observational study of 789 pts
- 2/3 of hemorrhage occurred with plt >20K

Fig 5.	The	distribution	of	platelet	transfusion	days	by	morning
platelet c	ount	for all stem o	ell	transpla	nt patients (r	1 = 78	39).	

Platelet count on day of onset		
Not available	9	6
<5,000/L	5	3
6,000-10,000/L	9	6
11,000-15,000/L	17	12
16,000-20,000/L	10	7
21,000-50,000/L	58	41
>50,000/L	35	25

Rebulla et al, 1997 (NEJM)

- RCT compared 10K to 20K triggers for plt Tx in AML induction (no M3 or 2° AML)
- Not specifically powered for non-inferiority (equivalence)

Rebulla, 1997

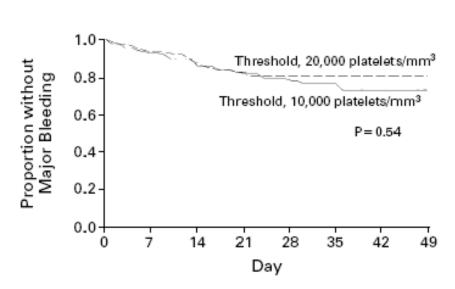
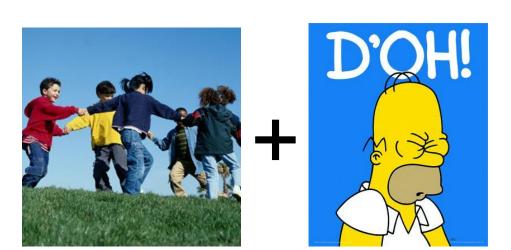


Figure 1. Proportion of Patients without Major Bleeding.

The relative risk of major bleeding was 1.1 in the group with a threshold of 10,000 platelets per cubic millimeter (95 percent confidence interval, 0.7 to 2.0) as compared with the group with a threshold of 20,000 platelets per cubic millimeter.


TYPE OF EPISODE	THRESHOLD, 10,000 PLATELETS/mm ²	THRESHOLD, 20,000 PLATELETS/mm ²
	no. of episodes	(no. of patients)
Gastrointestinal bleeding	12(10)	5 (3)
Hematuria	5 (5)	6 (4)
Metrorrhagia	3 (3)	2(2)
Epistaxis requiring transfusion	2(2)	2(2)
Retinal hemorrhage with visual impairment	3 (3)	2 (2)
Gingival hemorrhage requiring transfusion	0	2 (2)
Hemoptysis	1(1)	1(1)
Nonfatal cerebral hemorrhage	0	1(1)
Fatal cerebral hemorrhage	1(1)	0
System or organ affected not reported	12(10)	12(10)
Total*	39 (29)	33 (24)

^{*}Some patients had more than one type of episode.

The Platelet Dosing (PLADO) Trial NEJM, 2010

Modeling of Platelet Dosing

- Lower doses: less product utilization (good)
- Lower doses result in more time <10,000 (bad?)
- Identifying the balance between platelet utilization and bleeding risk

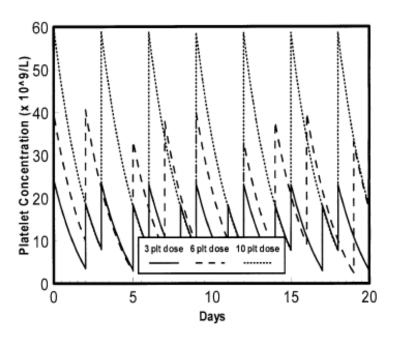
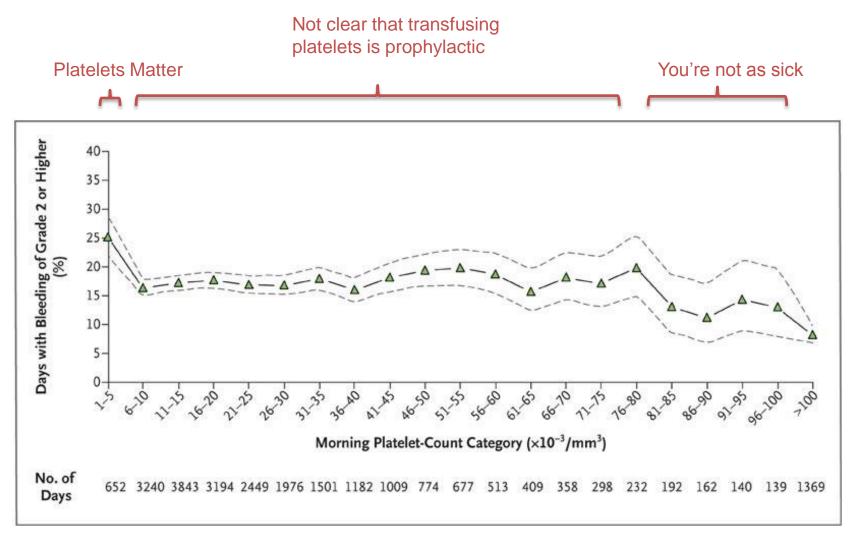


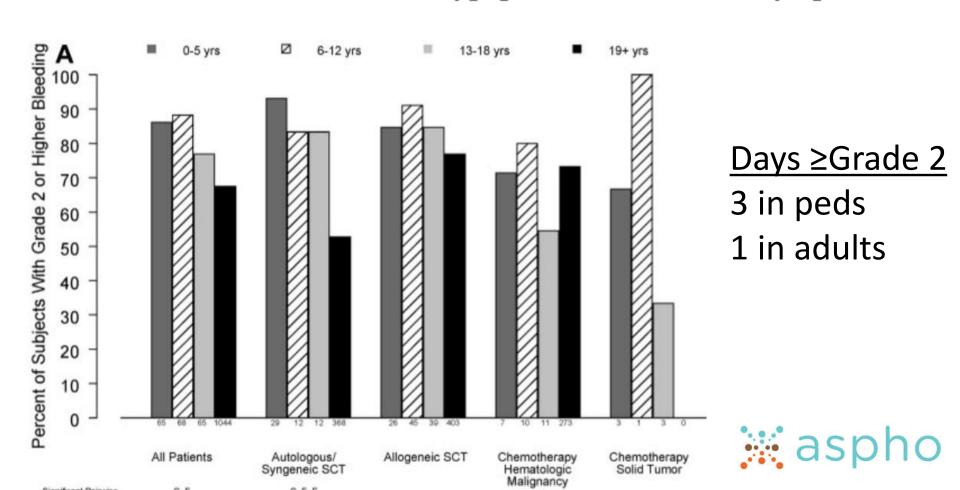
Fig 2. Total number of platelets transfused using 3 different prophylactic platelet transfusion doses: 3, 6, and 10 whole-blood-derived platelet units. (Reprinted with permission.⁶²)



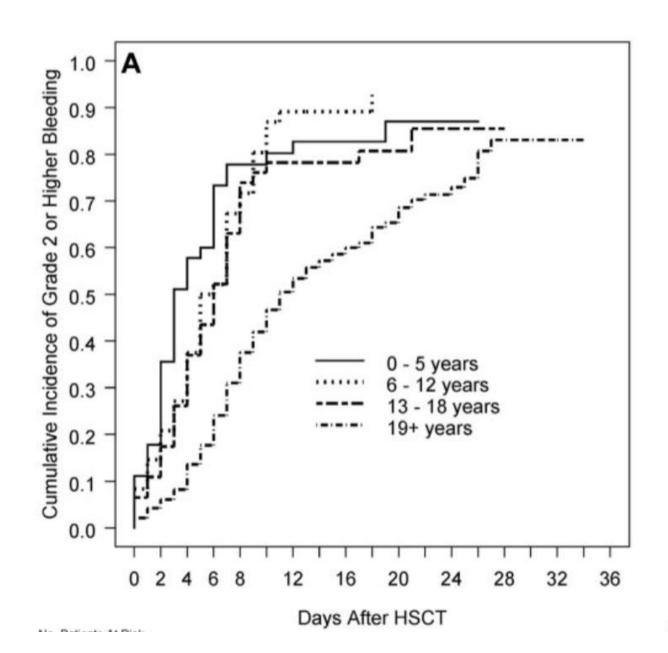
Surprising Result: Everyone Bled!

Characteristic	Platelet Dose [★]						
	Low Dose (N=417)	P Value, Low vs. Medium Dose	Medium Dose (N = 423)	P Value, Medium vs. High Dose	High Dose (N=432)	P Value, High vs. Low Dose	
Primary end point							
≥1 Episode of bleeding of grade 2 or higher — % of patients	71	0.60	69	0.71	70	0.94	
Secondary end points							
Highest grade of bleeding during study — % of patients		0.30		0.65		0.54	
No bleeding or grade 1	30		32		30		
Grade 2	58		59		60		
Grade 3	9		7		8		
Grade 4	3		2		2		
Death from hemorrhage — no. of patients	0		0	1.00	1	1.00	
No. of days with bleeding of grade 2 or higher		0.90		0.91		0.99	
Median	1		1		1		
Interquartile range	0-4		0-4		0-4		
Days from randomization to onset of bleeding of grade 2 or higher		0.85		0.66		0.55	
Median	7		7		8		
Interquartile range	3-18		3-19		3-19		

Bleeding vs. Platelet Count



Peds PLADO Subgroup


CLINICAL TRIALS AND OBSERVATIONS

CME article

Bleeding risks are higher in children versus adults given prophylactic platelet transfusions for treatment-induced hypoproliferative thrombocytopenia

Peds PLADO Subgroup

Is Platelet Tx Prophylaxis Needed? TOPPS Trial

ESTABLISHED IN 1812

MAY 9, 2013

VOL. 368 NO. 19

A No-Prophylaxis Platelet-Transfusion Strategy for Hematologic Cancers

- N=600
- Age ≥16 (mean=55)
- 70% auto HSCT

Prophylactic Platelet Tx Slightly Better than No Tx

Outcome		No Prophylaxis (N=301)	Prophylaxis (N = 299)	No Prophylaxis vs. Prophylaxis	P Value
Primary end point					
WHO grade 2, 3, or	4 bleeding — no. (%)	151 (50)	128 (43)	8.4 (1.7 to 15.2)†‡	0.06§
Secondary end point	S				
Highest grade of ble	eding — no. (%)				
None or 1		149 (50)	170 (57)		
2		145 (48)	127 (43)		
3		4 (1)	1 (<1)		
4		2 (1)	0		
No. of days from ran bleeding	idomization to first episode of grade 2, 3, or 4	17.2±12.8	19.5±12.6	1.30 (1.04 to 1.64)¶	0.02
	Receipt of platelet transfusions¶				
	≥1 transfusion — no. (%)	176 (59)	266 (89)	0.14 (0.09–0.23)	<0.001
	No. of transfusions/patient	1.7±2.6	3.0±3.2	0.62 (0.51–0.74)	<0.001
				, ,,,	
	No. of platelet units transfused/patient	1.9±3.3	3.2±3.6	0.67 (0.55–0.82)§	<0.001

TOPPS Trial: Auto vs. Allo Txp

Ou	itcome	No Prophylaxis (N=301) (N=299)		No Prophylaxis vs. Prophylaxis	P Value
Bleeding events of grade 2, 3, or 4 according to treatment and type of cancer — no./total no. (%)					
	Treatment				
	Autologous stem-cell transplantation	99/210 (47)	95/210 (45)	2.3 (-5.7 to 10.3)†	
	Chemotherapy	52/90 (58)	33/88 (38)	20.0 (7.9 to 32.2)†	0.04
	Type of cancer				
	Acute myeloid leukemia or acute lymphoid leukemia	37/60 (62)	21/56 (38)	24.2 (9.6 to 28.9)†	
	Lymphoma or myeloma	107/226 (47)	100/227 (44)	3.3 (-4.4 to 11.0)†	
	Chronic myeloid leukemia or other cancer	7/14 (50)	7/15 (47)	3.3 (-27.2 to 33.9)†	0.10

AABB Platelet Tx Guidelines 2015

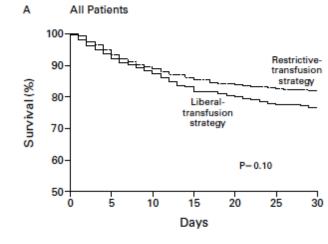
- For prophylactic plt tx if <10K
 - Strong, moderate quality
- For prophylactic plt tx if <20K for central venous catheter
 - Weak, low quality
- For prophylactic plt tx if <50K for major surgery (non-neuro) or lumbar puncture
 - Weak, very low quality

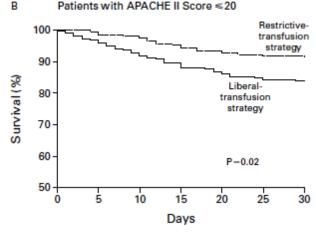
Prophylactic Platelet Tx Points

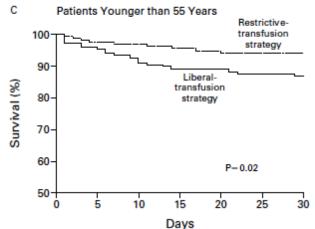
- Platelets ≠ hemostasis
- Platelets + humoral factors ≠ hemostasis
- Platelets + humoral factors + vascular integrity
 = hemostasis
- Platelets, coag times/factors are easy to measure but aren't the whole story

Outline

- Platelet Transfusion
 - Prophylactic threshold
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion


Considerations for Transfusing RBCs


- Symptoms
 - Dyspnea
 - Tachycardia
 - ? Fatigue
- Degree of anemia
- Patient/Family wishes
- Comorbidities
- Clinical status
- Outpatient status

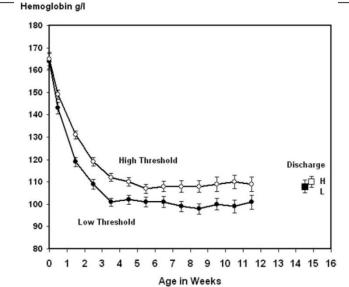


When to Transfuse: RBCs

- TRICC study (adults)
 - n=838 randomized to restrictive (keep hgb>7) or liberal (keep hgb>10)
 - Outcome: 30d survival
 - 82% intubated, 37% pressors

TRIPICU

- N=637 randomized
 - Mean age: 3y
 - Restrictive (keep hgb>7)
 - Liberal (keep hgb>9.5)
- Outcome is new/progressive MODS at 28d
- 12% incidence, both groups
- Mortality: equivalent
- 44% fewer transfusions with restrictive



PINT

• ELBW (<1000g, n=458)

Table I. Hemoglobin threshold levels	(g/L) triggering RBC transfusion
--------------------------------------	----------------------------------

		Low th	resnoia	High th	esnoia
Age in days	Blood sampling	Respiratory support	No respiratory support	Respiratory support	No respiratory support
1-7	Capillary Central	≤I15 ≤I04	≤100 ≤90	≤135 ≤122	≤I20 ≤I09
8-14	Capillary	≤104 ≤100	≤90 ≤ 8 5	≤122 ≤120	≤109 ≤100
	Central	≤90	≤77	≤109	≤90
≥15	Capillary Central	≤85 ≤77	≤75 ≤68	≤100 ≤90	≤85 ≤77

PINT

Outcome cluster	Low threshold	High threshold	Treatment effect* (95% CI)	P value
Composite primary				
Death, severe ROP, BPD,	165/223 (74.0%)	159/228 (69.7%)	OR: 1.30 (0.83, 2.02) RD: 2.7% (-3.7%, 9.2%)	.25
or head ultrasound			1	
brain injury			1	
Individual components			1	
Death	48/223 (21.5%)	40/228 (17.5%)	OR: 1.38 (0.84, 2.27) RD: 2.6% (-3.5%, 8.8%)	.21
Survived with severe	33/175 (18.9%)	33/188 (17.6%)	OR: 1.27 (0.71, 2.26) RD: 1.1% (-4.6%, 6.8%)	.42
ROP	, ,	, ,		
Survived with BPD	101/175 (57.7%)	103/188 (54.8%)	OR: 1.18 (0.76, 1.85) RD: 3.9% (-4.6%, 12.4%)	.46
Survived with head	22/175 (12.6%)	30/188 (16.0%)	OR: 0.86 (0.53, 1.39) RD: -3.3% (-9.9%, 3.4%)	.53
ultrasound brain injury	,	,		

FOCUS

- Hip surgery (n=2016); Mean age: 81y
- 63% cardiovascular dz
- Primary outcome: death or inability to walk independently

Table 3. Outcomes at 30 Days and 60 Days.*						
Variable	30-Day Period					
	Liberal Strategy (N = 1007)	Restrictive Strategy (N=1009)	Odds Ratio (99% CI)			
	no./tot	al no. (%)				
Death or inability to walk indepen- dently	459/995 (46.1)	481/1000 (48.1)	0.92 (0.73 to 1.16)			
Inability to walk independently	407/995 (40.9)	438/1000 (43.8)				
Death	52/995 (5.2)	43/1000 (4.3)	1.23 (0.71 to 2.12)			

Carson et al. NEJM. 2011.

AABB Systematic Review-Threshold

RR (95% CI)

	Transfus	Restrictive Transfusion Threshold		on d			
Source	No. of Deaths	Total No.	No. of Deaths	Total No.	RR (95% CI)	Favors Restrictive	Favors Liberal
Restrictive threshold, hemoglo	bin <8 to 9 g/d	L					
Lotke et al, ⁷⁵ 1999	0	62	0	65	Not estimable		
Blair et al, ⁵³ 1986	0	26	2	24	0.19 (0.01-3.67)		<u> </u>
Foss et al, ⁶³ 2009	5	60	0	60	11.00 (0.62-194.63)	_	
Carson et al, ⁵⁸ 1998	1	42	1	42	1.00 (0.06-15.47)		
Webert et al,86 2008	1	29	2	31	0.53 (0.05-5.58)		
Cooper et al,61 2011	2	23	1	21	1.83 (0.18-18.70)		
Carson et al, ⁵⁶ 2013	7	55	1	55	7.00 (0.89-55.01)		<u> </u>
Parker, ⁷⁸ 2013	5	100	3	100	1.67 (0.41-6.79)	·	
Bracey et al, ⁵⁴ 1999	3	215	6	222	0.52 (0.13-2.04)		<u></u>
Bush et al, ⁵⁵ 1997	4	50	4	49	0.98 (0.26-3.70)		
Hajjar et al, ⁶⁸ 2010	15	249	13	253	1.17 (0.57-2.41)	_	•
Gregersen et al, ⁶⁴ 2015	21	144	12	140	1.70 (0.87-3.32)		-
Jairath et al, ⁷² 2015	14	257	25	382	0.83 (0.44-1.57)	_	_
Carson et al, ⁶⁰ 2011	43	1009	52	1007	0.83 (0.56-1.22)		-
Subtotal Heterogeneity: τ^2 = 0.02; χ_{12}^2 = Tests for overall effect: z score	121 .13.14; P=.36; =0.31; P=.76	2321 I ² =9%	122	2451	1.05 (0.78-1.40)	•	
Restrictive threshold, hemoglo	bin <7 g/dL						
DeZern et al, ⁸⁷ 2016	1	59	2	30	0.25 (0.02-2.69)		
Hébert et al, ⁷⁰ 1995	8	33	9	36	0.97 (0.42-2.22)		-
de Almeida et al, ⁷⁹ 2015	23	101	8	97	2.76 (1.30-5.87)		
Lacroix et al, ⁷⁴ 2007	14	320	14	317	0.99 (0.48-2.04)		-
Walsh et al, ⁸⁵ 2013	12	51	16	49	0.72 (0.38-1.36)	-	<u> </u>
Murphy et al, ⁷⁶ 2015	26	1000	19	1003	1.37 (0.76-2.46)	-	-
Villanueva et al, ⁸⁴ 2013	19	416	34	417	0.56 (0.32-0.97)	-	
Hébert et al, ⁶⁹ 1999	78	418	98	420	0.80 (0.61-1.04)	-	i
Holst et al, ⁷¹ 2014	168	502	175	496	0.95 (0.80-1.13)		•
Subtotal Heterogeneity: τ²=0.05; χ ₈ 2=1 Tests for overall effect: z score	349 .6.09; P=.04; I =0.53; P=.59	2900 ² =50%	375	2865	0.94 (0.74-1.19)	*	
Overall Heterogeneity: $\tau^2 = 0.04$; $\chi^2_{21} =$ Tests for overall effect: z score	=0.29; P=.77		497	5316	0.97 (0.81-1.16)	0.01 0.1 1	.0 10

Tests for subgroup differences: $\chi_1^2 = 0.34$; P = .56; $I^2 = 0\%$

Carson et al. JAMA. 2016

Weight, %

0.4 0.4 0.4 0.6 0.6 0.7 1.5 1.6 1.7 4.8 5.4 5.8 10.5 34.2

0.6 3.8 4.5 4.7 5.8 6.5 7.2 14.7 18.0

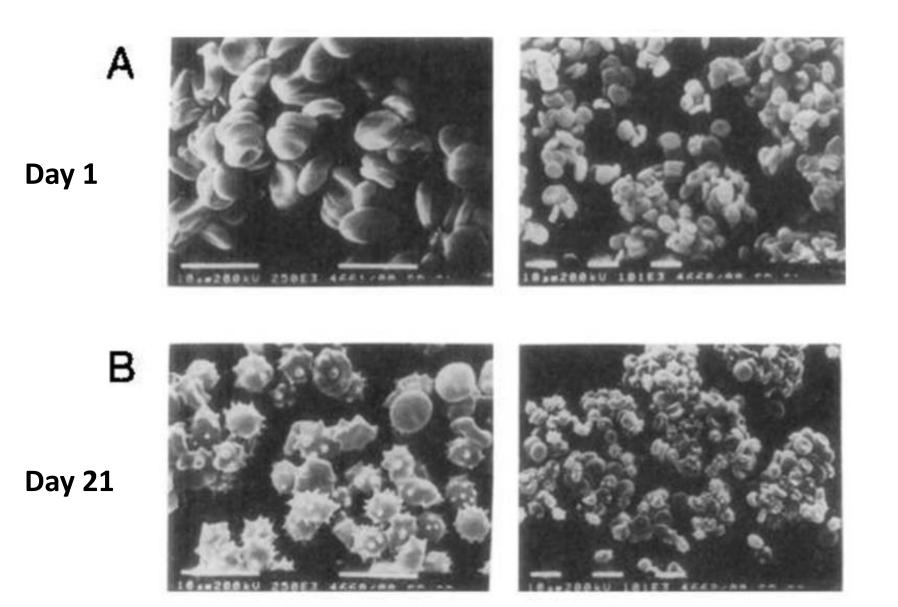
65.8

100

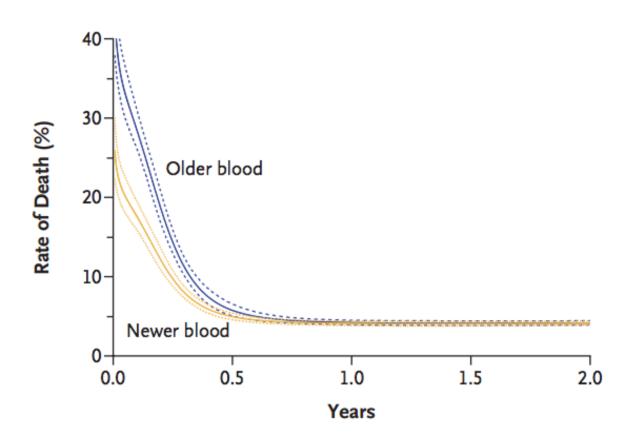
RBC Transfusion Threshold

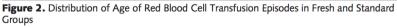
- No clinical trial evidence to support higher threshold for transfusion
- Priority placed on avoiding transfusion, i.e. favor restrictive strategy

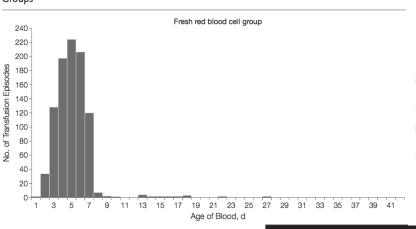
Outline


- Platelet Transfusion
 - Prophylactic threshold
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion

Storage Lesion


- Myriad biochemical and structural changes
- NO
 - Free hemoglobin (scavenge NO)
 - Asymmetric dimethyl arginine (inhibit NO synth)
- Decrease 2,3 BPG
- Inflammatory cytokine induction
- Promotion of bacterial growth
- Increased thrombin generation




The Koch Study

Cardiac surgery, 1998-2006 Exclusively +/-14d storage Propensity score adjusted ABO imbalanced Not adjusted for time (practice change)

ARIPI Trial- Neonates

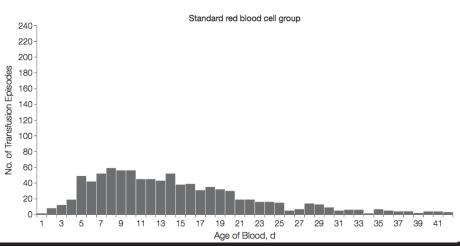
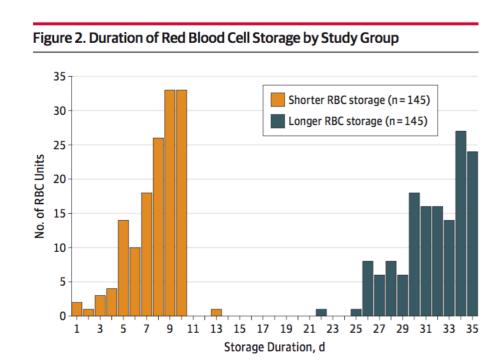


Table 4. Primary Outcomes


No	10/_
INO.	170

Standard Red Blood Cell	Fresh Red Blood Cell	
Group (n = 189)	Group (n = 188)	Relative Risk (95% CI)
15 (7.9)	15 (8.0)	1.00 (0.48-2.12)
11 (5.8)	18 (9.6)	1.65 (0.80-3.39)
26 (13.8)	23 (12.2)	0.89 (0.53-1.50)
63 (33.3)	60 (31.9)	0.96 (0.72-1.28)
31 (16.4)	30 (16.0)	0.97 (0.61-1.54)
100 (52.9)	99 (52.7)	1.00 (0.82-1.21)
	Blood Cell Group (n = 189) 15 (7.9) 11 (5.8) 26 (13.8) 63 (33.3) 31 (16.4)	Blood Cell Group (n = 189) (n = 188) 15 (7.9) 15 (8.0) 11 (5.8) 18 (9.6) 26 (13.8) 23 (12.2) 63 (33.3) 60 (31.9) 31 (16.4) 30 (16.0)

Fergusson et al. JAMA. 2012

TOTAL: Ugandan PICU

- ≤10 vs 25-35 day
- N=290, Age 0.5-5y
- Mean Hgb 3.7
- Outcome: Lactate <3 mmol/L @8h
- Dx: 81% malaria; 13% SCD
- No:
 - Pressors
 - Intubation
 - Dialysis

TOTAL: Ugandan Children

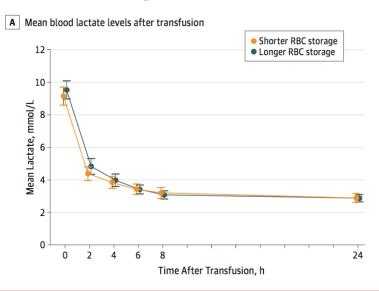
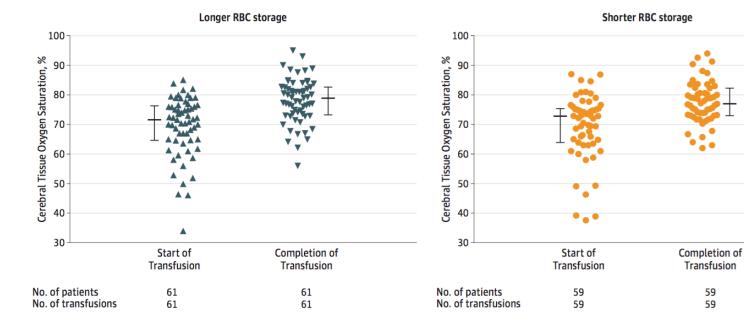



Figure 5. Cerebral Tissue Oxygen Saturation in Response to Transfusion

Dhabangi et al. *Lancet*. 2015

AABB Systematic Review-Storage Age

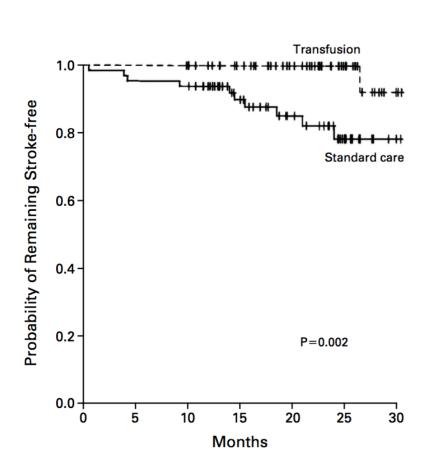
Figure 2. Association Between Fresher vs Standard-Issue Blood and Mortality in Adults, Neonates, Infants, and Children in Randomized Clinical Trials

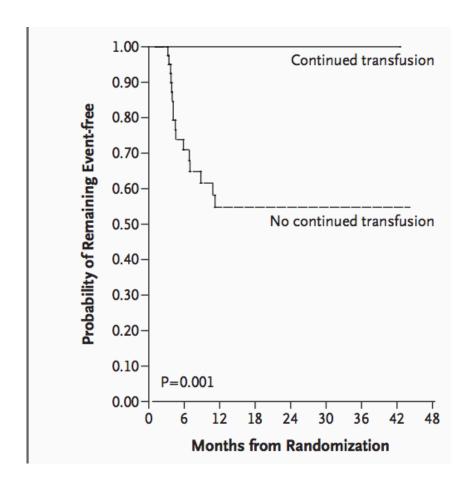
	Fresher Blood		Standard Issue Blood				
Source	No. of Deaths	Total No.	No. of Deaths	Total No.	RR (95% CI)	Favors Fresher Blood Favors Standard	Weight, %
Adults							
Bennett-Guerrero et al, 33 2009	1	12	0	11	2.77 (0.12-61.65)		→ 0.1
Aubron et al, ³⁴ 2012	5	25	2	26	2.60 (0.55-12.19)		0.4
Schulman et al, ³⁰ 2002	4	8	2	9	2.25 (0.55-9.17)		0.4
Hébert et al, ³² 2005	5	26	4	31	1.49 (0.45-4.98)		0.6
Steiner et al, ⁴¹ 2015	23	538	29	560	0.83 (0.48-1.41)		3.1
Kor et al, ³⁷ 2012	17	50	22	50	0.77 (0.47-1.27)		3.6
Heddle et al, ³⁶ 2012	35	309	61	601	1.12 (0.75-1.65)		5.8
Lacroix et al, ⁴⁰ 2015	448	1211	430	1219	1.05 (0.94-1.17)	-	79.2
Subtotal Heterogeneity: $\tau^2 = 0$; $\chi_7^2 = 5.47$; $P = 1$ Tests for overall effect: z score = 0.		2179 %	550	2507	1.04 (0.95-1.15)		93.2
Neonates, Infants, and Children							
Dhabangi et al, 38 2013	1	37	0	37	3.00 (0.13-71.34)		→ 0.1
Strauss et al, ²⁹ 1996	0	21	1	19	0.30 (0.01-7.02)	← • • • • • • • • • • • • • • • • • • •	0.1
Dhabangi et al, 39 2015	7	143	5	143	1.40 (0.45-4.31)		0.7
Fernandes da Cunha et al, 31 2005	9	26	10	26	0.90 (0.44-1.85)		1.7
Fergusson et al, ³⁵ 2012	30	188	31	189	0.97 (0.61-1.54)	-	4.2
Subtotal Heterogeneity: $\tau^2 = 0$; $\chi_4^2 = 1.46$; $P = 1.46$; $Q = 1.46$; Q			47	414	0.99 (0.69-1.42)	*	6.8
Overall Heterogeneity: $\tau^2 = 0$; $\chi_{12}^2 = 7.00$; P Tests for overall effect: z score = 0. Tests for subgroup differences: χ_1^2 :	585 2=.86; I ² =0 .81; P=.42	2594)%	597	2921	1.04 (0.95-1.14)	0.1 0.5 1.0 5.0 10 RR (95% CI)	100 ———————————————————————————————————

JAMA. 2016

Age of RBC

 No clinical trial evidence to support using fresher blood




Outline

- Platelet Transfusion
 - Prophylactic threshold
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion

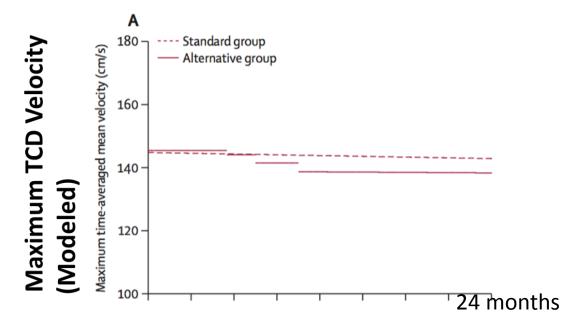
STOP/STOP2: Prophylactic RBC Tx Prevents Stroke in SCD with high TCD


Adams et al. *NEJM*. 2005.

Adams et al. NEJM. 1998.

2° Stroke Prevention: Convert Tx to HU/Phlebotomy: SWITCH

- Non-inferiority RCT (n=134)
- Prior stroke, >1.5y tx, mean age 13y
- Composite endpoint: stroke and reduced LIC
- Terminated: LICs similar between groups

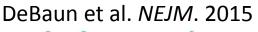


Ware et al. Blood, 2012

1° Stroke Prevention Convert from Tx to HU: TWITCH

- Non-inferiority RCT
- 4-16y, TCD>200 cm/s, Tx>1y; no severe vasculopathy
- Primary outcome: change in TCD
- Terminated: non-inferiority demonstrated
- Avg HbF with HU: 27%

Ware et al. Lancet. 2016



Silent Stroke (SCI) Prevention Transfusion (3y) vs. Std Care: SIT

- RCT, 5-15y, no stroke, SCI by MRI
- Primary outcome: stroke or new/larger SCI

	Transfusion (n=99)	No Transfusion (n=97)
Stroke (n)	1	7
New/Larger SCI (n)	5	7

- Also improvement in SCD morbidity (cf. SWITCH)
 - ACS, VOC, priapism, AVN, HA
- HU was exclusion
- Risk/benefit of iron loading

Pre-Op Tx is Important for SCD: TAPS Trial

- RCT of Tx vs. no Tx for low/moderate risk surgery (n=70)
- 97% HbSS, 60% <17y
- Terminated early: 30% (no Tx) vs. 3% (Tx) had
 SAE
 - Mostly ACS (n=9 vs n=1)

Summary: RBCs for SCD

- 2° stroke prevention: RBCs better than HU
- 1° stroke prevention: RBCs=HU
 - Aggressive HU
 - No severe vasculopathy
- SCI prevention: RBCs protect at-risk group from stroke
- Pre-operative RBCs important

Outline

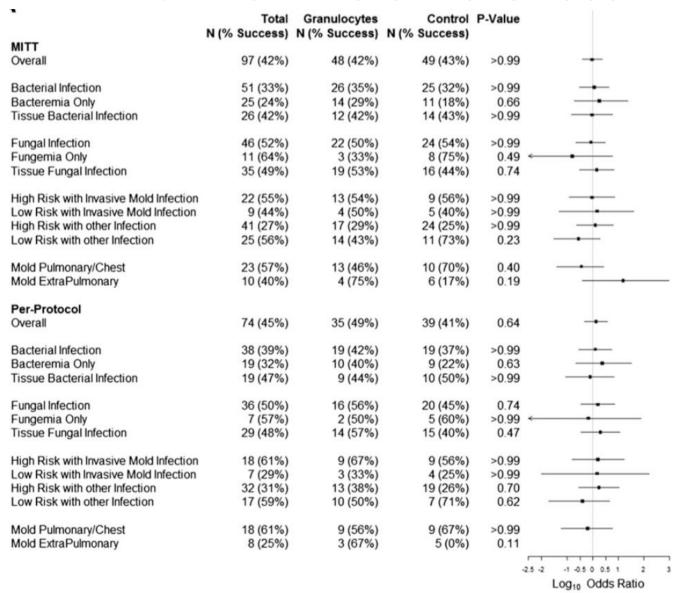
- Platelet Transfusion
 - Prophylactic threshold
- Red Cell Transfusion
 - Threshold for transfusion
 - Age of stored blood
 - SCD
- Granulocyte Transfusion

Granulocytes

- Indications
 - ANC <500 or qualitative defect</p>
 - Bacterial/fungal infection not responsive to Abx
 - Chance for neutrophil recovery
- Must be ABO/Rh compatible (lots of RBCs)
- Irradiated
- CMV as appropriate
- Used ASAP <4h (?<6h after amphotericin)
- Donors get dexamethasone ± G-CSF
- Give blood bank notice if canceling granulocytes

Evidence for Granulocyte Efficacy

- Best evidence from children (dose)
- No RCT
- Mean: 9 tx, 2x10⁹ granulocytes/kg
- 70% survival



RING Trial

- Suspected bacterial/fungal infection with neutropenia (n=114)
- Primary outcome: alive and response to infection at 42 days
- 10% <18y

RING Trial- No differences

Limitations of RING Trial

- Terminated early: underpowered
- Patients receiving granulocytes are heterogeneous
 - E.g. Asymptomatic pulmonary fungal ball vs. skin necrosis from clostridium

Summary: Granulocyte Transfusion

- No high quality evidence for efficacy
- Still has role in select circumstances

Summary: So What Matters?

- Prophylactic platelet tx: minor difference
- Dose of platelets: no difference
- Threshold for RBC tx: no difference
- Age of stored blood: no difference
- SCD: RBCs=HU for 1° stroke prevention
- SCD: RBCs>HU for 2° stroke prevention
- SCD: RBCs superior for pre-op prophylaxis
- Granulocyte transfusion: no difference

Future Studies in Peds Heme/Onc

- NHLBI Scientific Priorities in Transfusion Medicine (2016)
 - Coordination with trial groups to include transfusion data
 - Oncology/HSCT: Adjuncts to transfusion to prevent hemorrhage
 - Tranexamic acid, aminocaproic acid

QUESTIONS?

Please type them in the chat box at the bottom left hand side of your screen.

2017 Review Course

Join ASPHO for the

2017 Review Course

February 2-5, 2017 Omni Mandalay Hotel at Las Colinas Irving, TX

For more information about the upcoming review course, visit www.aspho.org/meetings/2017-review-course/overview

