Welcome!

- To join the call dial (303) 248-0285, code 8055841#.
- All participants are placed on mute for the duration of the webinar.
- Type questions in the chat box at the bottom left hand side of your screen. They will be answered at the end of the presentation.
- This conference is being recorded for future use. The recording will be made available on the ASPHO website afterwards.

If you are listening via VoIP through an iPhone, Android phone, or iPad, you must download the ReadyTalk app on your device to hear the presentation
Neonatal Thromboembolism: Management Challenges and Potential Solutions

Moderator: Chris Guelcher, RN-BC MS PPCNP-BC
Speakers: Jennifer L. Meldau, MSN CPNP CPHON RN-BC and Yaser Diab, MBBS
Children's National Health System
Disclosures

• Yaser Diab: no disclosures
• Jennifer Meldau: no disclosures
Objectives

• Review important aspects of the neonatal hemostatic system and their impact on the pathophysiology, diagnosis and treatment of neonatal thromboembolic events

• Discuss diagnosis and management of common neonatal thromboembolic events

• Explore the role of pediatric multi-disciplinary anticoagulation consult services with focus on Advanced Practice Nurse Practitioner-managed service model
Physiology of Hemostasis in Neonates

- Coagulation factors cannot cross the placenta
- 5 weeks gestation: FVII, FVIII, FIX, FX, AT, PC
- 20 weeks gestation: All procoagulants & anticoagulants in plasma
- At birth:

<table>
<thead>
<tr>
<th>Decreased Hemostasis</th>
<th>Increased Hemostasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyporeactive platelets</td>
<td>↑VWF (UHMW multimers)</td>
</tr>
<tr>
<td>↓FII, FVII, FIX, FX, FXI and FXII</td>
<td>↓AT, PC, PS</td>
</tr>
<tr>
<td>Fetal Fibrinogen</td>
<td>↓Overall fibrinolytic capacity</td>
</tr>
<tr>
<td></td>
<td>NL FV, FVIII, FXIII</td>
</tr>
</tbody>
</table>
Neonatal hemostatic system

- Neonatal hemostatic system remains physiologically intact but lacks adequate reserve under stress conditions.
 → The risk of bleeding/thrombosis is increased in the sick neonates, and is further increased in premature infants.

Thrombosis

Bleeding
Epidemiology of Neonatal Thrombosis

- Neonates have the highest risk for thromboembolism among pediatric patients
- 45–55% occur in preterm population
- M=F

<table>
<thead>
<tr>
<th>Data source</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian registry</td>
<td>2.4 per 1000 NICU admissions</td>
</tr>
<tr>
<td>German registry</td>
<td>5.1 per 100,000 live births</td>
</tr>
<tr>
<td>Dutch registry</td>
<td>0.7 per 100,000 live births</td>
</tr>
<tr>
<td>PHIS database</td>
<td>44-75 per 10,000 admissions</td>
</tr>
</tbody>
</table>

Rates of VTE diagnosis according to age group, from 2001 to 2007.

- <28 d
- 1 mo to <1 y
- 1 to <6 y
- 6 to <13 y
- 13 to 18 y
- All age groups

p < .001 for all groups
Common neonatal TE events

Neonatal TE

Venous TE
- Non-CNS
 - CVC-related extremity DVT
 - UVC-related IVC thrombosis
 - UVC-related portal vein thrombosis
 - Renal vein thrombosis
- Purpura fulminans
- CNS
 - CSVT

Arterial TE
- Non-CNS
 - UAC-related aortic thrombosis
 - Catheter-related peripheral arterial thrombosis
 - Non-catheter related arterial thrombosis
- CNS
 - Perinatal AIS

CNS

Renal vein thrombosis

CSVT

Purpura fulminans
Risk factors for thromboembolism

- Neonatal: Infection, CHD, prematurity/LBW, NEC, dehydration, polycythemia, thrombophilia
- Perinatal: Meconium aspiration, low Apgars
- Maternal: Chorioamnionitis, diabetes, hypertension, thrombophilia
- Iatrogenic: Catheters, ECMO, surgery
CVC-related thrombosis

- CVC=UVC, PICC, others
- Thrombosis
- 89% of neonatal venous thrombosis is CVC-related
- Overall incidence 9.2% (1.1–66.7%)
- No significant difference in incidence with different CVCs
Sites of CVC-related thrombosis

<table>
<thead>
<tr>
<th>Site of thrombus</th>
<th>UVC-related (n)</th>
<th>Surgically inserted CVC (n)</th>
<th>Unspecified type of CVC (n)</th>
<th>Overall (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right atrium</td>
<td>12</td>
<td>0</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>Left atrium</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Unspecified location in the heart</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Ductus venosus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Right atrium—inferior vena cava junction</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Inferior vena cava</td>
<td>23</td>
<td>1</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Hepatic vein (± intrahepatic portal vein)</td>
<td>43</td>
<td>0</td>
<td>14</td>
<td>57</td>
</tr>
<tr>
<td>Superior vena cava</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Subclavian vein</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td>2</td>
<td>59</td>
<td>162</td>
</tr>
</tbody>
</table>

Clinical Presentation

- Catheter dysfunction
- Limb or face swelling, discoloration of the skin, distention of the superficial veins
- **Persistent unexplained thrombocytopenia**
- Persistent chylous effusion (Cardiac patients)
- SVC syndrome
- Asymptomatic identified incidentally on radiologic studies
Diagnosis

- Compression Doppler ultrasound.
- Echocardiography
- Venography (MR, CT, conventional): proximal central venous system
Portal Vein Thrombosis

- Likely under-recognized
- UVC related in almost all cases
- Incidence: variable → 3.6 per 1000 admissions

Presentation

- Nonspecific or absent clinical and laboratory signs

<table>
<thead>
<tr>
<th>Indication for US</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal evaluation of hypertension</td>
<td>6</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>26</td>
</tr>
<tr>
<td>Inappropriate UVC placement</td>
<td>6</td>
</tr>
<tr>
<td>Elevated liver enzymes</td>
<td>9</td>
</tr>
<tr>
<td>Hepatosplenomegaly</td>
<td>5</td>
</tr>
<tr>
<td>Congenital anomalies</td>
<td>46</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>22</td>
</tr>
<tr>
<td>Sepsis</td>
<td>6</td>
</tr>
</tbody>
</table>

* Diagnosis: Doppler US

Renal vein thrombosis

• The most prevalent non-catheter-related thromboembolism during the neonatal period
• Accounts for up to 20% of all neonatal TEs
• Males 67%
• Unilateral 70% (Left 64%), IVC involved (40%)
• Incidence:
 • Germany: 2.2 per 100 000 live births
 • Canada: 2.3 cases per year over a 10-year period in Montreal
 • International: 0.5 per 1000 NICU admissions
Presentation and diagnosis

- Hematuria (56%)
- Palpable flank mass (45%)
- Thrombocytopenia (48%)
- Full triad (22%)
- Renal insufficiency (56%)
- Hypertension (Rare)

Diagnosis: Doppler US
CSVT

- 40% of pediatric CSVT occurs in neonates
- Incidence: at least 2.6 per 100,000
- Venous infarcts in > 50%

Presentation and diagnosis

- Subtle and non-specific
 - Seizures
 - Lethargy
 - IVH: CSVT is the most frequently recognized cause of symptomatic IVH, and is associated with basal ganglia and thalamic hemorrhage in term neonates
 - Focal CNS deficits are rare

- Diagnosis: CTV or MRV

Peripheral arterial thrombosis

• Catheter-related thrombosis
 • Indwelling catheter
 • UAC → aortic thrombosis
 • PAL → LE or UE arterial thrombosis
 • Cardiac catheterization: → LE (femoral) artery thrombosis

• Non-catheter-related thrombosis: rare
 • Spontaneous neonatal aortic thrombosis (SNAT)

• Incidence:
 • Indwelling UAC: up to 32% (symptomatic in 3%)
 • Indwelling PAL 3% (55% neonates)
 • Cardiac catheterization: 11% (57% neonates)
Presentation and diagnosis

- Absent pulses
- BP difference of >10 mmHg in legs
- Decreased skin temperature
- Skin discoloration
- Prolonged capillary refill
- Hypertension
- UAC-related aortic thrombosis: asymptomatic identified incidentally on radiologic studies
- SNAT: just like critical aortic coarctation

- Diagnosis: Doppler US
Perinatal AIS

• Arterial stroke that occurs between 20 weeks of fetal life through the 28th postnatal day, confirmed by neuroimaging or neuropathologic studies

• 2 types:
 • Symptomatic neonatal AIS
 • Presumed Perinatal Ischemic Stroke

• Incidence: 1 in 2300 live births

Presentation and diagnosis

- Symptomatic neonatal AIS: seizures within a day after birth and without focal deficits or encephalopathy
- Presumed Perinatal Ischemic Stroke: seizures or emerging hemiparesis in infancy/childhood

Diagnosis: diffusion weighted MRI and MRA
Purpura fulminans

• A rare hematological emergency
• Few hours or days after birth:
 • Skin lesions: macules → skin necrosis
 • DIC
 • Large vessel thrombosis
• Severe protein S/C deficiency due to homozygous or compound heterozygous mutations
• FFP (10–20 ml/kg every 8–12 h)

Management of neonatal TEs

• Published guidelines:
 • ACCP-2012
 • AHA 2008
 • AHA 2011
 • AHA 2013
 • BCSH 2011
 • ISTH 2015

 ❖ Chest. 2012 Feb;141(2 Suppl):e737S-e801S.
Management outline

• **No antithrombotic therapy**
 → monitor clinically/radiologically
 • Bleeding risk outweighs benefit
 • Clinically asymptomatic thrombosis
 • Small/non-occlusive
 • Non-critical site
 • Chronic
 • Trigger removed
 • AIS

• **Antithrombotic therapy**
 • Anticoagulation:
 • UFH
 • LMWH
 • ?Fondaparinux
 • ?DTIs (Argatroban and Bivalirudin)
 • Thrombolysis:
 • Systemic: life/organ/limb threatening thrombosis
 • ?CDT
Symptomatic catheter-related thrombosis

• Venous thrombosis → can keep catheter
 • Remove catheter after 48-72 hours of anticoagulation if:
 • Not needed
 • Not working
 • Thrombosis progression during anticoagulation

• Arterial thrombosis → remove catheter
Duration of anticoagulation

- Venous thrombosis
 - Treat x 6 weeks
 - Resolution → D/C therapy
 - No resolution → Continue x 3 months total
 - Continue (prophylactic doses) after completion of therapy if trigger still present

- Arterial thrombosis:
 - Treat until resolution for up to 3 months
 - Assess response at 2 weeks, 6 weeks and 3 months
Thrombophilia testing

• ISTH 2002: all pediatric patients with thrombosis should to be tested!
• Challenges in neonates:
 • Required sample volume for comprehensive thrombophilia testing is prohibitive
 • Interpretation of borderline results is difficult
• Testing is not helpful:
 • AIS: [Blood. 2017 Jul 20;130(3):382]
• Testing could be helpful:
 • Unprovoked thrombosis
 • Recurrent thrombosis
 • ?Non-catheter related thrombosis
Long-term follow-up

- Extremity DVT: monitor for PTS for at least 2 years
- Portal vein thrombosis: monitor for portal HTN for at least 5 years
- Renal vein thrombosis: monitor for HTN, renal dysfunction for at least 5 years
- Peripheral arterial thrombosis: monitor for limb-length discrepancy and chronic arterial insufficiency
- CSVT/AIS: f/u with neurology

NP Service Model

• How it works
 • Daily rounding by NP
 • Provides consistency at teaching hospital
 • Teaching for families, nursing, residents, fellows, etc
 • Increased availability
 • Guideline/protocol driven
 • Reminders for labs, imaging, d/c and f/u needs
Our experience with NP managed anticoagulation service

• Less:
 • Improperly administered medication (Insuflon™, incorrect sites, etc.)
 • Inconsistent or incomplete therapy
 • Loss to f/u
 • Varied management from each attending
Our experience with NP managed anticoagulation service (continued)

• More
 • IV enoxaparin in critical care units
 • More quickly therapeutic (appropriate dose recommendations)
 • Subcutaneous injection teaching on floors in preparation for discharge
 • Educational material provided to each family
 • Safer discharges with appropriate dose ordered
IV Enoxaparin

TABLE 2. Comparison of Therapeutic Enoxaparin (Target Antifactor Xa Level, 0.5–1 U/mL) According to Administration Route in Infants and Children More than 3 Months Old

<table>
<thead>
<tr>
<th>Variable</th>
<th>IV Enoxaparin (n = 30 Courses Given to 17 Patients)</th>
<th>Subcutaneous Enoxaparin (n = 26 Courses Given to 39 Patients)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mo)</td>
<td>8 (4–56)</td>
<td>29 (7–85)</td>
<td>0.34</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>14 (4–56)</td>
<td>12 (7–14.9)</td>
<td>0.21</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>11 (65)</td>
<td>19 (60)</td>
<td>1.00</td>
</tr>
<tr>
<td>Cardiac disease, n (%)</td>
<td>12 (71%)</td>
<td>21 (72%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Duration enoxaparin given (d)</td>
<td>8 (5–28)</td>
<td>12 (7–27)</td>
<td>0.37</td>
</tr>
<tr>
<td>Baseline platelet count (x10^3)</td>
<td>293 (165–480)</td>
<td>275 (205–370)</td>
<td>0.75</td>
</tr>
<tr>
<td>Baseline partial thromboplastin time (s)</td>
<td>33 (29–41)</td>
<td>33 (31–40)</td>
<td>0.69</td>
</tr>
<tr>
<td>Baseline international normalized ratio</td>
<td>1.19 (1.07–1.31)</td>
<td>1.21 (1.07–1.40)</td>
<td>0.70</td>
</tr>
<tr>
<td>Baseline anhrobin (%)</td>
<td>60 (44–88)</td>
<td>76 (69–102)</td>
<td>0.05</td>
</tr>
<tr>
<td>Baseline creatinine (mg/dL)</td>
<td>0.80 (0.40–0.60)</td>
<td>0.40 (0.20–0.60)</td>
<td>0.16</td>
</tr>
<tr>
<td>Time required to achieve target anticoagulation levels (d)</td>
<td>4 (2–23)</td>
<td>9 (4–19)</td>
<td>0.30</td>
</tr>
<tr>
<td>Proportion of patients who achieved target levels on initial dosing, n (%)</td>
<td>8 (40%)</td>
<td>14 (39)</td>
<td>1.00</td>
</tr>
<tr>
<td>No of dose adjustments</td>
<td>3 (1–6)</td>
<td>2 (0–3)</td>
<td>0.15</td>
</tr>
<tr>
<td>Dose adjustments per day of therapy</td>
<td>2 (0–3)</td>
<td>1 (0–2)</td>
<td>0.89</td>
</tr>
<tr>
<td>Time in target range (d)</td>
<td>4 (2–23)</td>
<td>9 (5–19)</td>
<td>0.23</td>
</tr>
<tr>
<td>Percent time in the target range</td>
<td>70 (45–94)</td>
<td>75 (60–90)</td>
<td>0.71</td>
</tr>
<tr>
<td>Major or clinically relevant hemorrhage, n (%)</td>
<td>1 (5)</td>
<td>2 (9)</td>
<td>1.00</td>
</tr>
<tr>
<td>Radiologic response, n (%)</td>
<td>Complete: 7 (34%)</td>
<td>14 (50)</td>
<td>1.00</td>
</tr>
<tr>
<td>Partial</td>
<td>1 (6)</td>
<td>6 (21.5)</td>
<td>0.72</td>
</tr>
<tr>
<td>No resolution</td>
<td>2 (11%)</td>
<td>2 (7)</td>
<td>0.36</td>
</tr>
<tr>
<td>No follow-up studies available</td>
<td>3 (12%)</td>
<td>6 (21.2)</td>
<td>0.72</td>
</tr>
<tr>
<td>Anticoagulation failure, n (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Data are reported as median (interquartile range or frequency, n) and analyzed using Mann-Whitney U test or Fisher exact test, as appropriate.
Development of inpatient pediatric anticoagulation management service: the advanced practice nurse practitioner service model 2015 ISTH 13 (Suppl2) p400
Questions?

• Thank you!
• ydiab@childrensnational.org
• JMeldau@childrensnational.org
Questions?

Type them in the chat box at the bottom left hand side of your screen.
SAVE THE DATE
May 2–5, 2018
Pittsburgh, PA | David L. Lawrence Convention Center

ANNUAL MEETING
Your Bridge to Knowledge, Collaboration, and Community